Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 313: 137294, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36427580

RESUMO

Detection of toxic metals at the lowest of their concentration in a variety of matrices has become a necessity due to the widespread and persistent nature of the contaminant. In this context, biosensors provide a viable alternative to the large sophisticated instrumentation. This study focuses on the development of a cost-effective fungal biomass-based biosensor that can be used for the detection of Cu(II). The fungal cells were pretreated with formaldehyde and studied with various spectroscopic studies. It was observed that the carbonyl groups along with amine groups played role in the sorption of copper ions which were stripped in an electrolytic solution to quantify the metal. Herein the dried fungal biomass was chemically activated and used to prepare a novel graphite paste electrode by repurposing a plastic pipette tip. The factors affecting the detection signal were optimized in further study. The electrochemical characterization revealed that the prepared bio-electrode was capable of detecting Cu in the range of 1 × 10-7 M to 2 × 10-5 M.


Assuntos
Técnicas Biossensoriais , Grafite , Penicillium , Cobre/química , Metais , Técnicas Eletroquímicas
2.
J Hazard Mater ; 433: 128711, 2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35395524

RESUMO

The study aims to see how effective the Citrobacter species strain is in removing HgII under stressful conditions. For this, a response surface methodology was chosen to optimized pH, temperature, and biomass for effective biotransformation of HgII. The optimized value for pH, temperature, and biomass were 6.5, 30 °C, and 2 mg/l with 89% HgII removal potential. TEM-EDX showed accumulated mercury onto the bacterial surface. Pot study was conducted to check the potentiality of this strain in alleviating the toxicity in Solanum lycopersicum L. under different concentrations of mercury. The enhancement in antioxidative enzymes, as well as mercury accumulation, was observed in test plants inoculated with IITISM25. Obtained result showed a greater accumulation of mercury in the root system than that of the shoot system due to poor translocation. Moreover, mercury reductase enzyme synthesis was also boosted by the addition of ß-mercaptoethanol and L-cysteine. The optimized condition for maximum enzyme synthesis was at pH 7.5 and temperature 30 °C with Km = 48.07 µmol and Vmax = 9.75 µmol/min. Thus, we can say that Citrobacter species strain IITISM25 can be effectively applied in remediation of HgII stress condition as well as promotion of Solanum lycopersicum L growth under stress conditions as a promising host.


Assuntos
Citrobacter , Mercúrio , Antioxidantes/metabolismo , Biomassa , Biotransformação , Citrobacter/metabolismo , Mercúrio/metabolismo , Mercúrio/toxicidade
3.
J Hazard Mater ; 415: 125653, 2021 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-34088177

RESUMO

This research experiment was conducted to investigate the potential of Brevundimonas species IITISM22 to remove mercury by using live biomass of bacterial cells at 298, 308, and 318 K. Characterization of bio-sorbent was done by FT-IR and SEM-EDX. The prime functional groups accountable for binding Hg were OH, -NH2, -CH, -SH and -COO. The deformed bacterial structure was seen after Hg adsorption over the bacterial cell. Influences of different experimental factors, such as pH, temperature, contact time, Hg concentration, and biomass dose was examined. IITISM22 exhibited the highest Hg absorption at pH 6.5, contact time of 4 h, and showed an increased adsorption capacity while increasing the concentration of Hg. Kinetics were recommended by pseudo-second-order for adsorption process and isotherm was adequately defined by the Linear Langmuir isotherm model (KL) = 1.4, 1.2, 0.9 mg/l; (RL) = 0.020, 0.015, 0.013, respectively than Freundlich isotherm model. The Activation energy (Ea) of biosorption calculated were (131.10 KJ/mole) by using Arrhenius equation, and the thermodynamic parameters were ΔG⸰ (-41.03, -16.33, -16.12 KJ/mol), ΔH⸰ (-36.87 KJ/mol) and ΔS⸰ (-194.03 J/mol), respectively. These findings suggest that the removal process was based on chemisorption and the biosorption was exothermic. The result of the current experiment indicated that the IITISM22 could be an authentic biosorbent for Hg detoxification.


Assuntos
Mercúrio , Poluentes Químicos da Água , Adsorção , Biomassa , Concentração de Íons de Hidrogênio , Cinética , Espectroscopia de Infravermelho com Transformada de Fourier , Termodinâmica
4.
Environ Sci Pollut Res Int ; 28(27): 35661-35677, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33677667

RESUMO

The contamination of soil by heavy metals such as Hg is growing immensely nowadays. The drawbacks of physicochemical methods in the decontamination of polluted soils resulted in the search for an eco-friendly and cost-effective means in this regard. In this study, a potential Hg-resistant bacterial (IITISM23) strain was investigated for their removal potential of Hg, isolated from Hg-contaminated soil. IITISM23 strain was identified as Morganella sp. (MT062474.1) as it showed 99% similarity to genus Morganella of Gammaproteobacteria based on 16S rRNA gene sequencing. The toxicity experiment confirmed that the strain showed high resistance toward Hg. In low nutrient medium, EC50 (effective concentration) values were 6.8 ppm and minimum effective concentration (MIC) was 7.3 ppm, and in a nutrient-rich medium, EC50 value was 32.29 ppm and MIC value was 34.92 ppm, respectively. In in vitro conditions, IITISM23 showed the removal efficiency (81%) of Hg (II) by the volatilization method in Luria-Bertani (LB) broth. The changes in surface morphology of bacteria upon the supplementation of Hg (II) in broth media were determined by SEM-EDX studies, while the changes in functional groups were studied by FT-IR spectroscopy. The mercury reductase activity was determined by a crude extract of the bacterial strain. The optimal pH and temperature for maximum enzyme activity were 8 and 30oC, with Km of 3.5 µmol/l and Vmax of 0.88 µmol/min, respectively. Also, strain IITISM23 showed resistance toward various antibiotics and other heavy metals like cadmium, lead, arsenic, and zinc. Hence, the application of microbes can be an effective measure in the decontamination of Hg from polluted soils.


Assuntos
Mercúrio , Poluentes do Solo , Biodegradação Ambiental , Biotransformação , Morganella , RNA Ribossômico 16S/genética , Espectroscopia de Infravermelho com Transformada de Fourier
5.
Ecotoxicol Environ Saf ; 208: 111621, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33396141

RESUMO

The study explored the polycyclic aromatic hydrocarbon tolerance of indigenous biosurfactant producing microorganisms. Three bacterial species were isolated from crude oil contaminated sites of Haldia, West Bengal. The three species were screened for biosurfactant production and identified by 16S rRNA sequencing as Brevundimonas sp. IITISM 11, Pseudomonas sp. IITISM 19 and Pseudomonas sp. IITISM 24. The strains showed emulsification activities of 51%, 57% and 63%, respectively. The purified biosurfactants were characterised using FT-IR, GC-MS and NMR spectroscopy and found to have structural similarities to glycolipopeptides, cyclic lipopeptides and glycolipids. The biosurfactants produced were found to be stable under a wide range of temperature (0-100 °C), pH (4-12) and salinity (up to 20% NaCl). Moreover, the strains displayed tolerance to high concentrations (275 mg/L) of anthracene and fluorene and showed a good amount of cell surface hydrophobicity with different hydrocarbons. The study reports the production and characterisation of biosurfactant by Brevundimonas sp. for the first time. Additionally, the kinetic parameters of the bacterial strains grown on up to 300 mg/L concentration of anthracene and fluorene, ranged between 0.0131 and 0.0156 µmax (h-1), while the Ks(mg/L) ranged between 59.28 and 102.66 for Monod's Model. For Haldane-Andrew's model, µmax (h-1) varied between 0.0168 and 0.0198. The inhibition constant was highest for Pseudomonas sp. IITISM 19 on anthracene and Brevundimonas sp. IITISM 11 on fluorene. The findings of the study suggest that indigenous biosurfactant producing strains have tolerance to high PAH concentrations and can be exploited for bioremediation purposes.


Assuntos
Antracenos/metabolismo , Biodegradação Ambiental , Fluorenos/metabolismo , Tensoativos/metabolismo , Antracenos/química , Bactérias/metabolismo , Fluorenos/química , Glicolipídeos , Hidrocarbonetos/metabolismo , Cinética , Petróleo/metabolismo , Hidrocarbonetos Policíclicos Aromáticos/metabolismo , Pseudomonas/metabolismo , RNA Ribossômico 16S/metabolismo , Espectroscopia de Infravermelho com Transformada de Fourier , Tensoativos/química
6.
Environ Sci Pollut Res Int ; 27(22): 27422-27434, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31587164

RESUMO

Thermal power generating industries affect the surrounding environment in various ways. Fly ash escapes along with flue gases and can be found in undesirable quantities in soil and water sources in the region. The water quality of an area must be evaluated regularly to ensure the quality of potable water. The present study evaluates the pre-monsoon and post-monsoon concentrations of several important physico-chemical parameters and heavy-metal contents of groundwater samples collected from sites near the Koradi Thermal Power Plant, a major source of power generation in the Nagpur Region. The maximum amount of total dissolved solids observed during the two seasons studied were 1571 mg/l and 1591 mg/l which is within the desirable limit implying that fly ash contamination did not affect this water quality parameter. The total hardness of samples from GW-3, GW-5 and GW-9 were 844 mg/l, 775 mg/l and 675 mg/l during pre-monsoon season, while GW-3 and GW-5 along with GW-4 continued to show high levels of total hardness at 1015 mg/l, 741 mg/l and 650 mg/l, respectively. These values are higher than the permissible limit due to the high levels of ions of bicarbonate, calcium, sodium and sulphate derived from fly ash leachate. Statistical analysis showed that sulphides, total hardness, electrical conductivity and total dissolved solids were the significant water quality parameters of the region. The evaluation of the parameters found that the three water sources (GW-3, GW-5 and GW-9) out of 10 are the most affected groundwater sources of fly ash pollution.


Assuntos
Água Subterrânea , Poluentes Químicos da Água/análise , Cinza de Carvão , Monitoramento Ambiental , Centrais Elétricas , Qualidade da Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...